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PACS. 64.70.Md – Transitions in liquid crystals.

PACS. 61.30.Gd – Orientational order of liquid crystals; electric and magnetic field effects on
order.

PACS. 61.30.Dk – Continuum models and theories of liquid crystal structure.

Abstract. – We report the first experimental high–electric-field phase diagram of a nematic
liquid crystal with negative dielectric anisotropy. The variation of the paranematic-nematic
transition temperature (TPN) is essentially linear with |E|, whereas the Landau-de Gennes
theory predicts a quadratic variation. It is argued that the quenching of director fluctuations
by the field contributes significantly to the thermodynamics of the transition.

Introduction. – Nematic liquid crystals have a long-range orientational order of molecules
with shape anisotropy. Confining our attention to rod-like molecules, the local average orien-
tation direction of the long axes is denoted by a dimensionless unit vector n̂ called the director.
It is apolar in nature which requires that the orientational order parameter of a nematic is
a second-rank tensor given by Qαβ = S(3nαnβ − δαβ)/2, where S = 〈3 cos2 θ − 1〉/2 is the
magnitude of the order parameter, θ being the angle made by the long axis of the molecule
with n̂. The Landau-de Gennes free-energy expression describing the nematic-isotropic (NI)
phase transition will then have a nonzero cubic term (see eq. (1) below), implying that the
transition is thermodynamically first ordered in nature with S jumping from a finite value
(� 0.3) to 0 [1]. The dielectric anisotropy ∆ε (= ε‖− ε⊥, the subscripts referring to directions
in relation to n̂) is proportional to S. As the orientational part of the dielectric energy density
under an external electric field E is fe = −∆εε0

2 (n̂ · �E)2, where ε0 is the vacuum dielectric
constant, E2 is conjugate to S. If E is large, S is increased and further a weak orientational
order is induced even above the NI transition temperature (TNI), giving rise to a paranematic
(P) phase. The PN transition temperature increases with field. If ∆ε > 0, N and P phases
have the same symmetry and beyond a critical field (Ec) there is a continuous evolution of S
between N and P phases in analogy with the liquid-gas transition under varying pressures [2].
Typically Ec � 2 × 107 V/m and the electric-field phase diagrams of a couple of nematogens
with positive ∆ε have been studied experimentally [3–6].
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The nematic order also gives rise to a curvature elastic response to director-distortions
in the medium which can be decomposed into three basic deformations viz splay, twist and
bend [1]. The relevant energy density in the one-constant approximation is fd = K

2 (∇n)2,
where K, the elastic constant, is rather small, ∼ 10−12 newtons. Consequently, there are large
director fluctuations in the medium, giving rise to a strong scattering of light. The external
electric field E quenches the director fluctuations as well, thus increasing the measured value
of the order parameter S, as pointed out by de Gennes [1]. The relevant increase in the order
parameter, viz (S(E) − S(0)), is ∝ |E|, varying linearly with the modulus of the field. At
low fields this director fluctuation-quenching effect dominates, as was found experimentally
using both electric [4, 6] and magnetic [7] fields. Many compounds exhibit a transition from
the N phase to the layered smectic-A (SmA) phase as the temperature is lowered. The SmA-
N transition can be second-ordered in nature and, as de Gennes pointed out [8], there is
a formal analogy between the SmA-N and superconductor-normal metal transitions. There
are two types of smectics viz type-I and type-II just as in superconductors. Interestingly
Halperin, Lubensky and Ma (HLM) [9] pointed out that in type-I materials of both systems,
gauge fluctuations (which are the director fluctuations in the nematic) couple to the (smectic)
order parameter, making the relevant transition weakly first-ordered in nature. The HLM
effect has been clearly demonstrated in the liquid-crystal case [10–13]. In particular, the
quenching of the director fluctuations due to a strong electric field has been shown to restore
the second-order character of the SmA-N transition [13].

Returning to the PN transition, for materials with negative ∆ε, the phase diagrams can be
expected to have a different character from those for positive ∆ε materials [2]. The long axes
of the molecules in the field-induced paranematic (P) phase tend to orient orthogonal to E but
without any preference in azimuthal angles. Thus the P phase is uniaxial with a negative sign
(NU−) with S < 0. In the N phase the medium becomes weakly biaxial under E, which has a
contribution from the differential suppression of the fluctuations of n̂ in the plane containing E
and n̂ compared to that in the orthogonal plane [14]. The first-ordered biaxial nematic NB to
NU− transition is expected to go over to a second-ordered one above a tricritical field Etc [2,15].
In the following we describe the first experimental electric-field phase diagram of a nematic
with negative ∆ε. Our main result is to show that the quenching of thermal fluctuations of the
director significantly contributes to the field-dependent shift of the PN transition temperature.

Experimental results. – Application of a large electric field to a nematic heats the sample
both due to ionic currents and dielectric relaxation. Durand et al. [3, 4] used short high-
frequency electric pulses with long time intervals between the pulses to overcome this problem.
Basappa et al. [5] developed a technique of measuring the local temperature using a patterned
nickel thermometer. We adopted the latter technique which allows us to measure both ε⊥ and
the birefringence ∆µ(= µ‖ − µ⊥) using a light beam travelling along the field direction of a
planar aligned sample taken between an indium tin oxide-coated top plate and an aluminium
(Al)-coated bottom plate. The Al coating is separated from the nickel thermometer by a
thin insulating layer. The experiment was controlled by a computer and the details will
be published elsewhere [16]. The optical measurement is made in the reflection mode of a
polarising microscope (Leitz; Orthoplan). The laser beam which is polarised at an angle of
45◦ to the director is reflected from the bottom aluminium electrode after passing through
the sample, and the intensity transmitted through a crossed polariser is measured using a
photodiode. The sample is 4′ butyl-4 heptyl-bicyclohexyl-4-carbonitrile (CCN-47) obtained
from Merck. It has the highly polar cyano group making a large angle with the long axis
of the molecule and two fully saturated cyclohexane rings. Thus the medium has very low
birefringence (∆µ). The phase sequence of the compound is Cr 28 ◦C SmA 30.6 ◦C N 59.7 ◦C I.
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Fig. 1 – (a) Variation of order parameter (calculated using S = ∆µ/∆µ0) at 15 × 104 V/m (open
squares), 3.3× 106 V/m (open circles), 6.5× 106 V/m (upward triangles), 9.8× 106 V/m (diamonds),
1.3 × 107 V/m (downward triangles). (b) Variation of order parameter in the nematic phase within
0.15 ◦C of the transition point. Data points are those below the temperatures limited by the dashed
line shown in (a). Continuous lines are the theoretical fits to S = S0+α(1−T/T ∗∗)β . Vertical dotted
lines indicate the temperatures corresponding to the calculated values of T ∗∗.

The measured optical phase difference is 2∆φ = 4π
λ (∆µ)d, where d is the sample thickness

(� 16.0 µm, measured using an interferometric technique), and the factor 2 comes from the
double passage of the light beam through the sample in the reflection mode. The medium
exhibits a wide nematic range and the measured temperature variation of ∆µ [16] is used to
estimate ∆µ0, the value for perfect orientational order (S = 1) by using the Haller extrap-
olation procedure [17]. As ∆µ is very small, the order parameter is given to a very good
approximation by S = ∆µ/∆µ0. Under an electric field, the medium becomes biaxial and ∆µ
is a measure of S − P , where P is the biaxial order parameter which is two orders of mag-
nitude lower than S [14] and is ignored in further discussion. The data collected at different
sinusoidally varying fields at a frequency of 4111 Hz over narrow temperature ranges around
the PN transition temperatures are shown in fig. 1(a) as functions of the local temperature
measured by the nickel thermometer to an accuracy of ∼ 8 mK. In the paranematic phase
(NU−), with the orientational order induced by the electric field, the optic axis is defined by
the field, and no birefringence is measured as the light beam travels along the optic axis. A
simultaneous measurement of the dielectric constant shows an enhancement (∝ E2) reflecting
the induced order in the paranematic phase [16]. The obliquely coated SiO on the electrodes
induces a surface order above TNI even in the absence of the field. This gives rise to a measur-
able birefringence below some temperature. As seen in the data at the lowest field (fig. 1(a)),
the thickness-averaged value of S tends to diverge as the temperature approaches the transi-
tion point to the bulk nematic phase, as predicted by theory [18]. Below the bulk transition
temperature (TPN), the order parameter variation has the opposite curvature, tending to
saturate as the temperature is lowered (fig. 1(a)). The dotted line in fig. 1(a) connects the
temperatures up to which the smooth bulk-like variation of S is seen in different voltage runs.
In order to get a quantitative measure of TPN, we fitted the data within a range of 0.15 ◦C
below the temperature lying on the dotted line to the functional form S = S0 +α(1−T/T ∗∗)β

in which S0 is the value at T ∗∗, the superheating temperature of the nematic, and α and β
are constants. This form is predicted by the Landau-de Gennes theory with β = 0.5, but,
as is well known [1], experimentally β is found to be much smaller. Our data can be fitted
reasonably well up to a field of 107 V/m to the above form with β � 0.17 (fig. 1(b)). T ∗∗ is
very close to the bulk transition temperature TPN and can be taken as a measure of the latter.
We plot both ∆T ∗∗(= T ∗∗(E) − T ∗∗(0)) and ∆T corresponding to the temperature at which
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Fig. 2 – (a) Dependence on electric field of ∆T = T (E) − T (0) (filled triangles), the temperatures
at which the birefringence starts to rise from zero (see fig. 1(a)), and of ∆T ∗∗ = T ∗∗(E) − T ∗∗(0)
(filled circles, see fig. 1(b)). Variation of ∆TPN (filled squares) of 5CB obtained from fig. 3 of ref. [3]
is also shown. (b) Variation of the measured enhancement of order parameter ∆S = S(E)− S(0) at
a temperature of 59.6 ◦C in CCN-47. The lines are guides to the eye.

∆µ becomes nonzero, as functions of the RMS values of the applied field in fig. 2(a). The
most important observation, which has also been confirmed on an independent sample [16], is
that the variations have finite slopes at zero field, and increase essentially linearly with |E|.
The electric-field phase diagrams of nematogens with positive dielectric anisotropy have been
analysed [3] by using the standard Landau-de Gennes model (see eq. (1) below). However,
TPN has not been plotted as a function of |E| in these studies. We use the data given in fig. 3
of ref. [3] and plot the shift ∆TPN(= TPN(E) − TNI) of pentyl cyanobiphenyl (5CB) also in
fig. 2(a). It is clear that TPN shifts linearly with |E| in this case as well. The Landau-de
Gennes free energy density of a nematic with ∆ε > 0 subjected to an electric field is given by

FLdG = F0 − hSE2 +
a(T − T ∗)

2
S2 − B

3
S3 +

C

4
S4, (1)

where a, B, C are the Landau coefficients, T ∗ is the maximum supercooling temperature of the
isotropic phase, and h = ε0∆ε0/3, where ∆ε0 is the value of ∆ε for S = 1. As eq. (1) contains
a term quadratic in the field, it can only predict that ∆TPN ∝ E2 [19]. The linear dependence
on |E| clearly shows the importance of the director fluctuations even in the thermodynamics
of the PN transition under electric fields.

Fig. 3 – (a) Calculated variation of ∆TPN as a function of electric field. (b) Calculated variation of
∆S in the nematic phase at TNI − 0.1◦ as a function of field.
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Indeed, as we mentioned earlier, the quenching of director fluctuations in the nematic
phase gives rise to an enhancement in the measured value of S, viz S(E) − S(0), which is
∝ |E|. We show in fig. 2(b) the order parameter of CCN-47 at the fixed local temperature of
59.6 ◦C as a function of field. The variation is linear with |E| at low fields and the quadratic
contribution becomes more visible at high fields.

Discussion. – For modest fields, such that the PN transition has a first-order character,
the fluctuations in the magnitude of the order parameter S can be expected to be relatively
small. The long-wavelength director fluctuations are partially quenched by the electric field,
thus decreasing the entropy of the medium. The resulting increase in the free energy has not
been taken into account in eq. (1). We may point out an analogous problem of the undulation
interaction, which arises in lamellar systems. In this case, the layer fluctuations are restricted
due to the presence of the neighboring layers and the corresponding increase in the free energy
was calculated by Helfrich [20]. In the case of nematic liquid crystals, the amplitudes of the
director fluctuations are reduced in the presence of the field. We can use a dimensional
analysis to estimate the corresponding increase in the free energy density. There are two
length scales in this problem. One is the electric coherence length ξ(E) = ( K

ε0∆ε )
1
2 1
|E| , which

is a length such that the director fluctuations with wavelengths longer than ξ are essentially
suppressed by the field [1]. The other length gives rise to the cut-off wave vector qc = 2π/l,
for the applicability of the elasticity theory, where l is a typical molecular dimension. As
the additional contribution arises from an entropic origin, we write the additional free energy
density with the following combinations of the thermal energy and the above two lengths:
∆F = kBT

q2
c
ξ + kBT qc

ξ2 . In the mean-field model K = K0S2 and ∆ε = ∆ε0S, and we can

write ξ(E) = C
√

S/|E|, where the constant C = (K0/ε0∆ε0)
1
2 . Thus,

∆F =
αT√

S
|E| + βT

S
E2, (2)

where α = kBq2
c/C, and β = kBqc/C2 are constants and β � α. The contribution of the

above unconventional expression to ∆F is zero when E = 0. In order to justify eq. (2), we
first consider a material with positive ∆ε for the sake of simplicity. Treating the director
fluctuation as a random variable [1], the fluctuation amplitude n⊥ in a plane perpendicular
to the director can be assumed to have a Gaussian distribution:

W (n⊥) =
1

C ′√2π〈n2
⊥〉

exp
[
− n2

⊥
2〈n2

⊥〉
]
, (3)

where C ′ is a normalising constant which can be found by setting
∫ 1

0
W (n⊥)dn⊥ = 1. It should

be pointed out that the limit of the integration is taken from 0 to 1 instead of 0 to ∞ as for a
usual Gaussian distribution. In the absence of the field, the fluctuation amplitude is given by
〈n2

⊥〉0 = (kBT/2π2K)qc [1]. We estimate 〈n2
⊥〉0 � 0.14 in the nematic phase at 50 ◦C, assuming

l � 10 Å, and the elastic constant K � 5×10−12 newtons. For this value of 〈n2
⊥〉0, 95% of the

area of the variation of W (n⊥) is covered within n⊥ � 0.8 and hence the upper limit of integra-
tion can be taken to be infinity and the normalising constant is then C

′ � 1. With increasing
field, 〈n2

⊥〉E decreases and hence the approximation is more justifiable. The entropy due to
this distribution is given by ζ = −kB

∫ 1

0
W (n⊥) ln(W (n⊥))dn⊥. This can be simplified to get

∆ζ = ζE − ζ0 = kB

[
ln

(√〈
n2
⊥

〉
E

)
− ln

(√〈
n2
⊥

〉
0

)]
, (4)
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where ζE and ζ0 are the entropies and 〈n2
⊥〉E and 〈n2

⊥〉0 are the mean-square fluctuation
amplitudes in the presence and in the absence of electric field, respectively. The sum of the
distortion and electric free energy densities fd and fe for each Fourier mode can be equated
with the thermal energy 1/2kBT (equipartition theorem). The mean-square fluctuation am-
plitude is then given by [1]

〈
n2
⊥(q)

〉
E

=
kBT

V

1
K(q2 + ξ−2)

, (5)

where V is the volume of the sample and ξ the electric coherence length defined earlier. In
real space the fluctuation amplitude is given by

〈
n2
⊥

〉
E

=
kBT

2π2K

(
qc − 1

ξ

(
π

2
− 1

qcξ

))
. (6)

The excess free energy density is given by ∆F = −T∆ζ. Using eqs. (4) and (6), the simpli-
fied form of the free energy can be recast in the form of eq. (2). Using eqs. (1) and (2), the total
free energy density is given by F = FLdG+∆F . Close to the critical point 〈n2

⊥〉 can be large and
the above approximation is no longer valid, and further the fluctuations of order parameter S
should also be taken into account. In the paranematic phase there is no director in the absence
of field and hence the free energy density in that phase is given by eq. (1). The equilibrium
value of S minimises the appropriate free energies. The paranematic-to-nematic transition
temperature is found numerically by comparing the two minimised energies (F and FLdG). For
illustration, we use the Landau coefficients which are known for 5CB [3]: a = 0.13×106 J/Km3,
B = 1.6 × 106 J/m3, C = 3.9 × 106 J/m3, and h = 6 × 10−11. The parameters α and β are
estimated to be 3×10−8 and 10−15, respectively. We find that ∆TPN shows practically a linear
variation up to 5×106 V/m, and beyond that the influence of the quadratic component is seen
(fig. 3(a)). This reflects the trend seen in fig. 2(a) qualitatively. The calculated variation of or-
der parameter in the nematic phase (fig. 3(b)) also has a trend similar to that of the measured
variation shown in fig. 2(b). The experimetnal data reported in this letter pertain to a material
with negative ∆ε. In this case, the field is applied orthogonal to n̂. The director fluctuations
are suppressed only in the n̂− �E (i.e., ẑ, x̂)-plane, but not in the orthogonal (ẑ, ŷ)-plane. Un-
like in a material with positive ∆ε, the distribution function is not cylindrically symmetric for
E �= 0. It can be written as W(nx, ny) = W1(nx)W2(ny). The width 〈n2

x〉E is given by eq. (6),
while 〈n2

y〉E = 〈n2
y〉0. The net result is that the change in entropy due to the suppression of

director fluctuations is reduced by a factor of 2 compared to that in a material with positive
∆ε. This may partly account for the higher slope seen in fig. 2(a) in the latter case.

Conclusion. – To conclude, our measurements as well as an analysis of the data available
in the literature show that under an electric field the paranematic-nematic transition tempera-
ture (TPN) varies lineraly with |E| in both materials with ∆ε < 0 and ∆ε > 0. It is argued that
the quenching of the director fluctuations under strong electric fields significantly contributes
to the thermodynamics of the nematic-to-paranematic transition. Using a dimensional ar-
gument as well as a simple physical model, we have calculated the entropic contribution to
the free energy density. The calculated trends in ∆TPN as well as S(E) − S(0) reflect the
experimental ones. The quenching of the director fluctuation thus plays a significant role in
the thermodynamics of both SmA-N and PN transitions. As mentioned earlier, for materials
with negative ∆ε the field-induced NB to NU− transition becomes second-ordered above a
tricritical field. This has been explored using the 3rd harmonic of the electric current which is
a measure of the susceptibility of the sample [6]. This result will be discussed elsewhere [16].
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