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Abstract. We report the experimental high electric field phase diagram of a nematic liquid crystal which
exhibits a large negative dielectric anisotropy. We measure simultaneously the birefringence (∆n) and the
dielectric constant (ε⊥) at various applied fields as functions of the local temperature of an aligned sample.
We also measure the higher harmonics of the electrical response of the medium. The following experimental
results are noted: (i) enhancement of orientational order parameter S in the nematic phase due to both
the Kerr effect and quenching of director fluctuations; (ii) enhancement in the paranematic to nematic
transition temperature (TPN) with field; (iii) divergence of the order parameter susceptibility beyond the
tricritical point as measured by third harmonic electrical signal; (iv) a small second harmonic electrical
signal which also diverges near TPN , indicating the presence of polarised domains. Our measurements show
that ∆TPN(= TPN(E)−TNI(0)) varies linearly with |E| whereas the Landau de Gennes theory predicts a
dependence on E2. It is argued that the quenching of director fluctuations by the field makes the dominant
contribution to all the observations, including the thermodynamics of the transition.

PACS. 64.70.Md Transitions in liquid crystals – 61.30.Gd Orientational order of liquid crystals; electric
and magnetic field effects on order – 61.30.Dk Continuum models and theories of liquid crystal structure

1 Introduction

Liquid crystals are anisotropic fluids, made of molecules
which lack spherical symmetry. They exhibit a variety of
phase transitions. These transitions can be thermodynam-
ically first or second order in nature [1]. The simplest liq-
uid crystal phase known so far is the uniaxial nematic.
When the nematic is made of rod like molecules their long
axes exhibit long-range orientational order along a specific
direction called the director denoted by n̂, a dimension-
less unit vector. n̂ and −n̂ are indistinguishable and the
system does not show any macroscopic polarisation. In
the uniaxial nematic phase, the magnitude of the orienta-
tional order parameter S = 〈3 cos2 θ − 1〉/2 [1], where θ
is the angle between the long axis of a molecule and the
director and angular brackets represent a statistical aver-
age. Thermodynamically the isotropic to nematic phase
transition is weakly first order with a heat of transition
of ∼1 kJ/mol [1]. Studies on the effects of electric and
magnetic fields on liquid crystals are interesting because
of both fundamental and technological importance. The
weak curvature elasticity of the nematic produces large
electrooptic effects exploited by the display industry and
also very strong fluctuations of the director which result
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in a turbid appearance of a bulk sample [1]. There have
been several reports on the effect of strong electric and
magnetic fields on the isotropic to nematic phase transi-
tion [2–9]. The electric field experiments were performed
mainly on systems exhibiting positive dielectric anisotropy
∆ε = ε|| − ε⊥, where the subscripts refer to directions in
relation to n̂. The dielectric anisotropy is a measure of the
order parameter S � ∆ε/∆εa, where ∆εa is the dielectric
anisotropy in the fully aligned state. ∆ε couples with E2

to lower the free energy density: FE = −(εo∆εaSE2)/2
where E is the applied electric field and εo the vacuum
dielectric constant. The field induces a weak orientational
order even in the isotropic phase (paranematic), as a result
of which all the physical properties in the medium become
weakly anisotropic. The field-induced birefringence (∆n)
in the paranematic phase due to the electric field is called
the Kerr effect, and the analogous effect due to a mag-
netic field is called the Cotton-Moutton effect. Under the
action of the field the paranematic to nematic transition
temperature is shifted towards higher values and the order
parameter is increased in the nematic phase also. At low
fields the transition occurs with a finite jump in the order
parameter in a first order phase transition. With increas-
ing field the jump decreases and above the critical field
there is a continuous evolution of the order parameter from
paranematic to nematic phase in materials with ∆ε > 0.
The symmetries of the two phases are the same and the
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possibility of a second order phase transition can be ruled
out. These phenomena resemble the classical liquid to gas
transition under pressure [2]. To shift the transition tem-
perature by a measurable quantity the electric or the mag-
netic free energy per molecule should be comparable to the
thermal energy kBT . The volume diamagnetic susceptibil-
ity anisotropy of a typical nematic is 10−6 m3/mol, and
the required magnetic field is 103 tesla, which is beyond ex-
perimental realization. On the other hand materials with
large positive dielectric anisotropy of ∼20 are available
and the required electric field is approximately 107 V/m
and attainable in the laboratory. If ∆ε > 0, the director
is aligned along the direction of the applied electric field
and the enhancement in the order parameter is due to the
Kerr effect as well as quenching of director fluctuations
but the system remains uniaxial [2]. Studies on the effect
of strong electric fields on liquid crystals with negative di-
electric anisotropy are also interesting because the phase
diagram is very different in nature compared to that in a
system with ∆ε > 0. A strong dipolar group which makes
a large angle with the long axis of the molecule is needed
to get a material with ∆ε < 0. To study the electric field
effect, the nematic liquid crystal is sandwiched between
two ITO (indium-tin oxide) coated glass plates, which are
treated for planar alignment of n̂ along the X-axis. The
field is applied along the Z-axis as shown in Figure 1a.
The dipoles of the molecules tend to align along the field
direction. As a result the long molecular axes tend to be
perpendicular to the field direction. In the paranematic
phase the distribution of azimuthal angles of the molecules
in the (XY ) plane perpendicular to the field is random.
The projections of the long axes of the molecules in the
XY plane are also shown in Figure 1a. The distribution
function f(θ) of the long axes around the field direction
shows a small peak at θ = π/2. With increasing field the
peak height increases as schematically shown in Figure 1b.
The paranematic phase (NU−) is uniaxial with a negative
order parameter. When the system is cooled under the
field below the paranematic to nematic transition tem-
perature the long axes of the molecules tend to align in
a preferred direction (X-axis say)which can be controlled
by the surface interaction with the treated plates. In the
nematic phase there is a partial quenching of the director
fluctuations due to the electric field in the ZX plane. Thus
the fluctuations in the ZX plane are smaller than those in
the plane (XY ) perpendicular to the field as shown in Fig-
ure 1a. The differential quenching of fluctuations leads to
induced biaxiality under field [3,10]. Therefore, under the
field the paranematic to nematic transition corresponds
to uniaxial nematic (NU−) to biaxial nematic (NB) tran-
sition. With increasing field the NU− to NB transition
temperature is shifted to higher values and the order pa-
rameter (see Eq. (1) in Sect. 2) is increased in the NB

phase. The jump in the order parameter reduces and fi-
nally the transition between the two phases with different
symmetries becomes second order in nature above the tri-
critical field.

The main problem in conducting high electric field ex-
periments on liquid crystals is the heating due to ionic

Fig. 1. (a) Schematic representation of the distribution of
molecules in the field induced paranematic (NU−) and biaxial
nematic (NB) liquid crystals with ∆ε < 0. The relative sizes of
the molecules are exaggerated for clarity. (b) Schematic repre-
sentation of the distribution function in the presence of electric
field above TPN . Dotted line represents the distribution func-
tion without field in the isotropic phase, and the continuous
line that in the paranematic phase with applied field. The peak
around π/2 is exaggerated for clarity.

conductivity of the sample as well as dielectric relaxation.
There can also be a hydrodynamic instability [1] for sys-
tems with ∆ε < 0. The first qualitative observation of the
critical field for a positive ∆ε material was due to Nicastro
and Keyes [4] who used a DC external field. They also
measured the DC Kerr effect in the isotropic phase of a
negative ∆ε material. To minimise the heating effect Du-
rand et al. [5,6] applied an electric field of short pulse
width (∼10 to 100 µs ) with long off period i.e. with a
small duty cycle. In this technique it takes a long time
(∼40 min) to collect each data point. We have adapted a
technique developed by Basappa et al. [7]. In this, the lo-
cal temperature of the sample is measured under field and
the data points are collected continuously. This technique
enables us to perform optical as well as electrical measure-
ments simultaneously on materials with ∆ε < 0.
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In this paper we report the following results on a ma-
terial with ∆ε < 0: (a) electric field induced enhancement
of birefringence in the nematic phase, (b) dielectric mea-
surement of the field induced order in the paranematic
phase, (c) an essentially linear dependence of the uniaxial
paranematic to biaxial nematic transition temperature on
the modulus of the field, (d) divergence of the order pa-
rameter susceptibility above the tricritical point as mea-
sured by 3rd harmonic electrical signal and (e) detection of
a small 2nd harmonic electrical signal at a high field. The
result (c) has already been reported in a brief letter [11].

2 Theoretical background

The application of an external electric field to a nematic
liquid crystal with a negative dielectric anisotropy induces
biaxial ordering. Considering up to the fourth order term
in the expansion, the Landau de Gennes free energy in
the presence of an external electrical field can be written
as [2,3]

F = − εo
2
∆εaEαEβQαβ
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⎞
⎠ (2)

where x is related to S defined earlier (x = 2/3S) and
y is the biaxial order parameter which distinguishes be-
tween two directions orthogonal to the director. The equi-
librium order parameters can be found by minimising the
free energy density F . The calculated phase diagram us-
ing this model for a nematic liquid crystal with negative
dielectric anisotropy is schematically shown in Figure 2 in
which h = εo∆εaE

2/3. The dependence of TPN on field
can be expressed analytically only when it becomes sec-
ond ordered, above the tricritical point. At such high fields,
∆T = TPN − TNI where TNI is the field free isotropic to
nematic transition point, is found to depend both on | E |
as well as E2 [2,3]. However, as discussed in reference [3],
at lower fields, the first order transition point can only be
calculated numerically. ∆T has a practically linear depen-
dence on E2 [1,3] as shown schematically in Figure 2. For
small E values, ∆T and ∆x = x(E)− x(0), the change in
the order parameter in the nematic phase at the transition
point are also small. Expanding the free energy to linear
order in ∆x and ∆T , it can be shown that ∆T ∝ E2.

3 Experimental

In order to measure the local temperature of the sample
we use an evaporated nickel (Ni) film to design a tem-

Fig. 2. Schematic representation of the h(∝E2), T phase dia-
gram of a nematic with ∆ε < 0. Thick line indicates first order
transitions, and dashed line second order transitions: TCP de-
notes the trictrical point. (adapted from Ref. [2])

perature sensor. Ni shows high temperature coefficient of
resistance (∼6180 ppm/K). A thin film of nickel is vac-
uum coated on a plane glass plate. A zigzag pattern of
the nickel film, which has a strip width ∼200 µm and total
length ∼0.05 m is etched using a photolithographic tech-
nique. The resistance of the pattern is ∼100 to 200 Ω. The
Ni thermometer is calibrated in each individual cell. The
thermometer is covered with a thin layer of insulating SiO
on which a circular aluminum (Al) electrode (0.5 cm di-
ameter) is vacuum evaporated. In order to reduce the field
gradient at the edge, a guard ring is provided just outside
the Al electrode with separation of 100 µm as shown in
Figure 3a. The top electrode is an ITO coated glass plate.
Finally a thin layer of SiO is coated on both the plates at
a grazing angle of 30◦ using a vacuum evaporation tech-
nique. The director is aligned orthogonal to incident di-
rection of the SiO beam [1]. Mylar spacers are used to
obtain the required cell thickness. The sample thickness is
measured outside the electrode area by an interferomet-
ric technique. The typical cell thickness is ∼16 µm. The
electrical connections to the two plates are made through
copper wires which are soldered using an ultrasonic solder-
ing gun. The cross section of a typical cell is schematically
shown in Figure 3b. The cell is mounted in an Instec hot-
stage (HS1) which itself is placed on the rotating stage of
a microscope (Leitz, Orthoplan). The temperature is con-
trolled to an accuracy of 0.008C. The cells are filled with
the sample in the isotropic phase and on slow cooling to
the nematic range, well-aligned samples are obtained.

The block diagram of the experimental set up is shown
in Figure 4. The output voltage of a lock in amplifier (LIA,
model SRS 830) is connected to a high gain voltage am-
plifier (TREK, 601-2). The output of the amplifier is con-
nected to one of the two branches as shown in Figure 4.
In one branch there is a potential divider circuit, which
is made of two resistors (100 Ω and 1 MΩ) connected in
series. The potential divider circuit is used to measure the
phase and amplitude of the amplified voltage. In another
branch the sample cell in connected in series with a capac-
itor Cm(∼1 µF). A manual DPDT switch is used to switch
between the two branches. The signal across the capacitor
Cm is used to measure the phase and amplitude of the
current flowing in the cell. Using an impedance analysis
technique [7] we measure the capacitance (CS) and resis-
tance (RS) of the sample. If V0 and φ0 are the amplitude
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Fig. 3. (a) Schematic diagram of the structure of the lower
electrode. There is an insulating SiO coating between Ni ther-
mometer and the Al electrode. Note the zigzag pattern of the
Ni thermometer. (b) Schematic of the side view of the cell (not
to scale).

Fig. 4. Schematic diagram of the experimental setup. PD1,
PD2 (Photodiodes). POL (Polariser), ANL (Analyser), MUL
(Multimeter), AMP (Voltage Amplifier), LIA (Lock in ampli-
fier), R1, R2 (Resistances), COM (Computer).

and phase at the output of the amplifier and Vm and φm

are those measured across the capacitor Cm, it can be
shown that the capacitance and resistance of the sample
are given by [7]: RS = Y/(ω sinα), CS = X/Y where
X = cosα − Q, Y = (sin2 α + X2)/(CmQ), Q = Vm/Vo,
α = φ0 − ψm and ω = 2πf , f is the frequency of the ap-
plied signal. The dielectric constant of the sample is given
by CS/C0, where C0 is the capacitance of the empty cell.

The lower electrode is opaque due to the Al and Ni
coatings, and it is not possible to perform optical mea-

surements in the transmission mode. As we have used an
ITO coated glass plate as the top electrode, the optical
measurements can be made in the reflection mode of the
microscope. A laser beam (He-Ne, λ = 632.8 nm) is passed
through a polariser (POL) and made to be incident on the
sample. The bottom Al electrode reflects the laser beam.
The reflected beam is passed through an analyser (ANL)
which is crossed with respect to the polariser. A photodi-
ode (PD1, model Centronics OSD-5) is used to measure
the reflected intensity. The stability of the laser intensity
is monitored by another photodiode (PD2). A multimeter
(MUL, Keithley 2000) is used to measure the output volt-
ages of both the photodiodes as well as the resistance of
the Ni thermometer. The temperature variation of the op-
tical intensity is measured. The intensity in this geometry
is given by the relation

I =
sin2 2ψ

2
(1 − cos∆φ) (3)

where ψ is the angle made by the polariser with the optic
axis and the phase difference

∆φ =
2π
λ
∆n2d (4)

where ∆n = ne − no, ne and no are the extraordi-
nary and ordinary refractive indices of the liquid crys-
tal medium. d is the sample thickness and the factor 2
arises because the light travels twice across the sample
thickness in the reflection mode. The angle ψ is set at
45◦ to optimise the measurements. The birefringence is
calculated from the measured intensity. The frequencies
and the voltage ranges used in the experiments are 4111,
15111 Hz, and 5 to 270 V respectively. The sample used is
4

′
-butyl-4 heptyl-bicyclohexyl-4-carbonitrile (CCN47) ob-

tained from Merck. It has the following phase transitions:
Cr 28 ◦C SmA 30.6 ◦C N 59.7 ◦C I. This compound ex-
hibits room temperature liquid crystalline phase with a
large negative dielectric anisotropy (−8.0 at 20 ◦C). The
measurements are completely controlled by a computer,
using a suitable program. All the experiments are per-
formed on cooling the sample from the paranematic phase.

4 Results and discussion

Variations of birefringence (∆n) as well as dielectric
constant (ε⊥) are shown as functions of local tempera-
ture(measured by the Ni resistance thermometer) at vari-
ous fields in Figures 5a and 5b respectively. The following
important features are noted from Figure 5a: (i) with in-
creasing field (a) ∆n is enhanced in the nematic phase
and (b) the paranematic to nematic (NU− − NB) transi-
tion temperature (TPN ) is shifted toward higher values;
(ii)∆n rises from zero relatively sharply as the tempera-
ture is lowered in the phase transition region; (iii) separa-
tions among the curves are quite wide close to the transi-
tion point and are reduced as the temperature is lowered
in the nematic phase. The experiments were conducted on
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Fig. 5. (a) Variations of ∆n as well as S across the
paranematic-nematic transition region as functions of local
temperature at 1.5 × 105 V/m (squares), 3.3 × 106 V/m (cir-
cles), 6.5 × 106 V/m (triangles), 9.8 × 106 V/m (diamonds),
1.3 × 107 V/m (hexagons), 1.6 × 107 V/m (stars). Frequency
of the applied field: 4111 Hz. Cell thickness: 16.4 µm. (b) Vari-
ation of ε⊥ across the paranematic-nematic transition region
as a function of local temperature at the same fields measured
simultaneously with ∆n shown in (a). Dotted line connects the
temperatures (designated as TPN ) at which the ∆n starts to
rise from zero value.

three independent samples and the results are similar in
all the cases.

The temperature at which ∆n starts rising from zero
value is a measure of the paranematic to nematic transi-
tion temperature (TPN ). At low fields, the paranematic to
nematic transition is first ordered in nature, and one would
expect a sharp jump in the birefringence at TPN . In our
experiments, the temperature resolution in 8 mK, and as
can be seen from Figure 5a, the width of the transition re-
gion is ≤0.06 K, for fields upto 9.75×106 V/m. The width
is similar for the four curves, which implies that it does not
arise from field gradients within the area of illumination
by the laser beam. The width may partly arise from dis-
solved impurities. Adiabatic calorimetric measurements
have shown that even a highly stable low temperature ne-
matogen like hexyl cyanobiphenyl exhibits a two phase co-
existence of 30 mK around TNI [12]. An additional contri-
bution to the width can arise from the nature of our exper-
iment. The transmitted intensity acquires a nonzero value

Fig. 6. Variation of paranematic-nematic transition temper-
ature (TPN) as a function of applied field. Data points are
obtained from the results shown in Figure 5a.

as soon as there is some alignment along the x-axis. The
alignment naturally is initiated at the two treated surfaces
of the 16 µm thick cell. The alignment can be expected
to pervade the entire cell at a slightly lower temperature,
which should be considered as the true bulk paranematic
to nematic transition point. In any case, as all the ex-
perimental runs have been made under similar conditions
on cooling the sample, the relative shifts should not be
sensitive to the method of identifying the transition tem-
perature. The well separated temperatures at which the
birefrigence becomes nonzero can be taken as a measure
of TPN .

The variation of TPN obtained from Figure 5a is shown
as a function of field in Figure 6. A large shift in TPN

(∼0.3◦) is measured between 1.5 × 105 to 1.6 × 107 V/m.
The important result is that TPN varies linearly with the
rms field. It may be recalled that a quadratic variation of
TPN is predicted by the Landau de Gennes free energy
as shown in Figure 2. This has to be contrasted with the
clearly quadratic dependence of the shift in the smectic
A-nematic (AN) transition point with field in the case of
octyloxy cyanobiphenyl [7]. The linear variation of TPN as
a function of field indicates that the quenching of director
fluctuations not only increases the order parameter but
also has a strong influence on the phase transition. This
point was not recognised in earlier high electric field exper-
iments on systems with ∆ε > 0 [5]. In the case of AN tran-
sition, both bend and twist elastic constants diverge as the
transition point is approached from the nematic side, and
correspondingly, the director fluctuations tend to zero and
thus do not influence the thermodynamics of the transi-
tion. It should be mentioned that on prolonged applica-
tion of high fields the sample degraded slightly reducing
the nematic to isotropic transition temperature. We have
carried out experiments only for a few fields to complete
the experiment quickly (in ∼8 h) and hence avoided such
degradation.

In the nematic phase, for example at 59.6 ◦C (see
Fig. 5a) the enhancement in ∆n is measurable up to
∼9.75× 106 V/m. Beyond that the curves in the nematic
phase are crowded though they are well separated in the
transition region. Visual observations of the sample were
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made between crossed polarisers in the nematic phase with
the principal director oriented parallel to the polariser (see
Fig. 4). Up to a field of ∼1.1× 107 V/m, the field of view
is uniformly dark. Beyond this field, some birefringent re-
gions are seen along with the motion of some dust parti-
cles. In spite of using a guard ring there may be a field
gradient at the edges of the sample. The field may also
be nonuniform inside the cell due to slight variations of
the local thickness or the presence of the dust particles
in the sample. Such field gradients which may not be in
the region in which the laser beam is incident can cause
physical motion of the medium at high fields. As a result
the sample can get misaligned and lead to light transmis-
sion. The merging of the curves beyond 107 V/m probably
occurs due to such a misalignment.

From the dielectric data (shown in Fig. 5b) several
important points can be noted: the width of the transi-
tion is somewhat larger than that found in the optical
experiments. The increase of the paranematic to nematic
transition temperature with field is however seen clearly.
The temperatures which are connected by a dotted line
in Figure 5b are obtained from Figure 5a and correspond
to those at which ∆n starts to rise from zero. The larger
width of the transition may arise due to the fact that ε⊥
is measured over a large area (2 × 10−5 m2) over which
the temperature may have some nonuniformity. With in-
creasing field, ε⊥ is increased in the NU− phase (see right
side of the dotted line in Fig. 5b). This shows that the in-
duced order parameter is also increased. We can calculate
the uniaxial negative order parameter in the paranematic
phase from the dielectric data, which will be discussed
later. At temperatures well below the transition region ε⊥
decreases slowly with decreasing temperature and the en-
hancement of ε⊥ with increasing field is also very small.
On the other hand, with increasing field a substantial en-
hancement of ∆n which is directly proportional to S is
observed well below the transition temperatures also.

The orientational order parameter for uniaxial nematic
liquid crystals can be well approximated by S ≈ ∆n/∆n0.
The birefringence of the compound used is very small, and
hence the internal field corrections are negligible. Thus it is
a legitimate approximation to calculate the order parame-
ter directly from ∆n data. In the nematic phase under an
electric field (as ∆ε < 0 ) the director fluctuations in the
plane containing the field are reduced compared to those
in the orthogonal plane. As a result the system becomes
biaxial, which is described by the order parameter S and
the biaxial order parameter P , which is related to y (see
Eq. (2)). In our experiment we measure the birefringence
in the plane orthogonal to the electric field. This is a mea-
sure of (S −P ) rather than S. However, the field induced
biaxial order parameter P ∼ 10−3 (at ∼3×106 V/m) in a
similar sample [10] whereas S ∼ 0.2. Hence we use ∆n as
a measure of the order parameter S. We have measured
∆n over the entire nematic range of the field free sample
to estimate ∆n0, the value for perfect orientational order
(S = 1) by using the Haller extrapolation procedure [13].
The scale corresponding to S = ∆n/∆n0 is also marked in
Figure 5a. The Landau de Gennes theory [1] gives rise to

Fig. 7. Variations of order parameter at different fields in
the nematic phase within 0.15 ◦C of the transition point. Con-
tinuous lines are the theoretical fits to equation (5). Vertical
dotted lines indicate the temperatures corresponding to the
fitted values of T ∗∗.

the following form of the temperature dependence of the
order parameter in the field free uniaxial nematic liquid
crystal:

S − S0 = α

(
1 − T

T ∗∗

)β

(5)

where T ∗∗ is the absolute limit of superheating of the ne-
matic phase, S0 is the order parameter at T ∗∗, β = 0.5,
and α is a proportionality constant.

According to the Landau de Gennes theory [1] (T ∗∗ −
TNI) is 8 times smaller than (TNI−T ∗). Experiments show
that T ∗ ∼ TNI − 1. Thus T ∗∗ is ∼0.1◦ above TNI , accord-
ing to the theory. As is well known [1]experimental results
on most nematogens yield β ≈ 0.2, which reflects the in-
adequacy of the meanfield model. In our samples there is a
small width of the paranematic to nematic transition. We
can fit the temperature variation of the order parameter
by treating equation (5) as an empirical relation which
is valid even in the presence of the field. The field de-
pendence of T ∗∗ can be expected to reflect the variation
of the bulk transition temperature. We use the data in
the nematic phase within only 0.15 ◦C from the transi-
tion point in this analysis. As we have mentioned, there is
some misalignment of the sample beyond ∼107 V/m and
hence we will consider the order parameter data only up
to 9.75× 106 V/m. In Figure 7 experimental values of the
order parameter in the nematic phase within 0.15 ◦C from
the transition point as well as the calculated variations us-
ing equation (5) are shown. The comparison between the
two is reasonably good up to 6.5 × 106 V/m, and not so
good for 9.75 × 106 V/m. The fitted values of S0, α, β
and T ∗∗ are shown in Table 1. T ∗∗ at different fields are
also indicated by vertical dotted lines in Figure 7. The
values of TPN which are defined as the temperature be-
low which the birefringence becomes nonzero (see Fig. 5a)
are also shown in Table 1 to compare with T ∗∗. From Ta-
ble 1 it is seen that T ∗∗ is ∼0.07 ◦C lower than TPN at
1.5×105 V/m and the difference is reduced to 0.04 ◦C at a
field of 9.75×106 V/m. This small difference between T ∗∗
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Table 1. Parameters which fit equation (5) at different fields.

Field in V/m S0 α β T ∗∗ (◦C) TPN (◦C)

1.5 × 105 0.12 0.37 0.17 59.68 59.75
3.27 × 106 0.11 0.40 0.17 59.73 59.78
8.51 × 106 0.09 0.47 0.17 59.80 59.86
9.75 × 106 0.08 0.52 0.16 59.88 59.92

Fig. 8. Dependence on electric field of ∆TPN = (TPN(E) −
TNI(0)) (triangles), where TPN(E) is the temperature at which
the birefringence starts to rise from zero (see Fig. 5a), and
of ∆T ∗∗ = T ∗∗(E) − T ∗∗(0) (circles, see Fig. 7). Variation of
∆TPN (squares) of 5CB obtained from Figure 3 of reference [5]
is also shown.

and TPN is a measure of the width of the transition, dis-
cussed earlier. When the field is increased from ∼1.5×105

to ∼9.75 × 106 V/m, S0 decreases from 0.12 to 0.08, in-
dicating that the strength of the transition is decreased
as the field is increased as expected. The value of β is
almost constant (0.17) and decreases slightly to 0.16 at
9.75 × 106 V/m. In order to measure ε⊥, the lowest field
applied was 1.5 × 105 V/m. As the field is too small to
cause any measurable change in the properties near TNI ,
we assume that T ∗∗ for 1.5×105 V/m is T ∗∗(0). The field
variation of∆T ∗∗(=T ∗∗(E)−T ∗∗(0)) is shown in Figure 8.
The amount of shift is ∼0.2 ◦C which is similar to the shift
of ∆TPN when the field is increased from 1.5 × 105 V/m
to 9.75× 106 V/m. The important observation is that the
variation of ∆T ∗∗ is essentially linear with |E|. The elec-
tric field phase diagram of a nematogen with ∆ε > 0 has
been published [5]. However, ∆TPN (= TPN(E)−TNI(0))
has not been plotted as a function of |E| in this study.
We use the data given in Figure 3 of reference [5] and
plot the shift ∆TPN of pentyl cyanobiphenyl (5CB) also
in Figure 8. It is clear that ∆TPN shifts linearly with |E|
in this case as well.

4.1 Order parameter enhancement by the field

Nematic Phase. The increase in order parameter due
to the application of electric field arises because of two
physical mechanisms. One mechanism is the macroscopic
quenching of thermal fluctuations of the director [1]. As
in the case of materials with ∆ε > 0 [6] the enhancement
of order parameter for a system with ∆ε < 0 due to this

effect alone can be written as

δSl = S(E, T ) − S(0, T ) =
3KBT

8π(K)3/2
(εo∆ε)1/2|E|

= Cl|E| (6)

whereK is the average curvature elastic constant, S(E, T )
is the order parameter in the presence of field and S(0, T )
is the same in the absence of field at the temperature
T . The subscript l indicates a linear variation with |E|.
The electric field quenches director fluctuations only in the
plane containing the field. The fluctuation components in
the orthogonal plane are not quenched, and as such the
numerical value of Cl is smaller than in materials with
positive ∆ε [1]. In the mean field approximation K ∝ S2,
and as ∆ε ∝ S, Cl ∝ S−5/2. As we shall see below, close
to the NI transition point, the variation of Cl is much
steeper, and we can write Cl ∝ S−x, in general. As dis-
cussed by Lelidis et al. [6], the enhancement of the order
parameter due to the quenching of thermal fluctuations in
turn generates a saturating term in second order, which is
given by:

δSlq = ClqE
2 = −x C2

l

S(0)
E2 (7)

The other mechanism for the enhancement of order pa-
rameter under the application of field is the Kerr effect,
which is microscopic in origin. The increase in order pa-
rameter due to this effect alone can be written as

δSkq = CkqE
2 (8)

where Ckq is an appropriate susceptibility. This effect is
quadratic in E, indicated by the subscript q. The enhance-
ment in the order parameter due to both the effects can
be written as

δS(E) = δSl + δSq = Cl|E| − x
C2

l E
2

S(0)
+ CkqE

2 (9)

The variations of measured δS(E)(=S(E)−S(0)) at differ-
ent temperatures very close to TNI are shown in Figure 9a.
Using a least squares fitting procedure, the enhancement
of the order parameter is fitted with equation (9). The
temperature variations of the fitted parameters Cl and
Cq(=Clq +Ckq) are shown in Figure 9b. Cl decreases and
Cq increases as the temperature is lowered in the nematic
phase [6,8]. The measurements which have been made
within ∼0.2 ◦C of TNI show that x � 5, which is much
larger than the mean field value of 5/2. The rapid increase
of Cl as the temperature is increased leads to an even
more rapid increase in the negative contribution to the
quadratic term as given in equation (9). Thus, though Ckq

also increases with temperature, the contribution from the
quenching of fluctuations dominates, and leads to a low-
ering of the net Cq as TNI is approached. The overall field
induced enhancement of the order parameter of course in-
creases as TNI is approached and is dominated by δSl.

Paranematic Phase. In the field induced paranematic
phase the symmetry axis is parallel to the laser beam and
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Fig. 9. (a) Variation of enhancement of the order param-
eter (δS) as a function of field at different local tempera-
tures. Continuous lines are fit to the functional form of δS =
Cl|E| + CqE

2. (b) Variations of the fitted parameters, Cl and
Cq as functions of local temperature. Dotted lines are drawn
as guides to the eye.

therefore we can not measure the order parameter us-
ing the optical technique. However we can calculate the
uniaxial negative order parameter (SU−) from the dielec-
tric data taken from Figure 5b. Thus the measurement
yields εP|| = ε + 2

3∆εaSU− where the superscript signi-
fies paranematic phase and the subscript refers to the di-
rection which is parallel to the symmetry axis. On the
other hand, in the nematic phase the principal director
is perpendicular to the field and we measure εN⊥ which is
given by εN⊥ = ε − ∆εaS/3, ignoring biaxiality which is
very small. (Above the tricritical point the paranematic-
nematic transition is second order and, εP|| = εN⊥ and hence
it is expected that SU− = −S/2 at TPN .) We have used
ε⊥ at 1.5×105 V/m and the value of S obtained by optical
measurement at (TPN − 2) ◦C to evaluate ∆εa = −9.97.
The variation of uniaxial order parameter SU− is shown as
a function of the applied field at T = 60.1 ◦C in Figure 10.
The enhancement of order parameter in the paranematic
phase arises mainly due to the Kerr effect and we use a
least squares fitting procedure to fit the data with the
equation S = CqE

2. The agreement with the measured
data is not very good. As we discussed earlier the dielec-
tric constant is measured over a large area (2 × 10−5 m2)
and the field and temperature may not be uniform in the

Fig. 10. Variation of uniaxial negative order parameter (SU−)
in the paranematic phase as a function of applied field at a
temperature 60.1 ◦C. Circles are experimental data. Contin-
uous line is the fit to the functional form S = CqE

2, where
Cq = 2.8 × 10−16 (m/V)2.

cell. The fit parameter Ckq = 2.8 × 10−16 (m/V)2 and is
comparable to the value of Ckq in the nematic phase.

4.2 Variation of paranematic to nematic transition
point with field: influence of director fluctuations

As shown in Figure 8, TPN as well as T ∗∗ vary linearly
with |E|. This is true for systems with both ∆ε > 0 as
well as ∆ε < 0. This clearly shows the importance of the
quenching of director fluctuations even in the thermody-
namics of the paranematic to nematic (PN) transition un-
der electric fields.

We may point out an analogous problem of the un-
dulation interaction, which arises in lamellar systems. In
this case, the layer fluctuations are restricted due to the
presence of the neighbouring layers and the corresponding
increase in the free energy was calculated by Helfrich [15].
In the case of nematic liquid crystals the amplitudes of
the director fluctuations are reduced in the presence of
the field. We can use a dimensional analysis to estimate
the corresponding increase in the free energy density. Our
experiments were conducted on samples of ∼16 µm thick-
ness. Theoretical calculations [10,16] show that at such
a thickness, the director fluctuations are not significantly
suppressed by the boundary conditions. However, Dunmur
et al. [10] found that the measured quenching of fluctua-
tions by an external electric field is significantly smaller
than the theoretical estimate for a sample of thickness of
∼12 µm. We have not carried out measurements on the
thickness dependence of the electric field effects. Our ear-
lier studies have shown that in the absence of external
fields, there is a significant increase in the measured or-
der parameter when the sample thickness is reduced to a
much smaller value, ∼1 µm [16], implying a strong sup-
pression of the fluctuations in the latter case. We do not
consider the influence of the sample boundaries in the
following analysis of the electric field effects. There are
two important length scales in this problem. One is the

electric coherence length ξ(E) =
(

K
εo∆ε

) 1
2 1

|E| , which is
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a length such that the director fluctuations with wave-
lengths longer than ξ are essentially suppressed by the
field [1]. The other length gives rise to the cut off wave
vector qc = 2π/l, for the applicability of the elasticity
theory, where l is a typical molecular dimension. As the
additional contribution arises from an entropic origin, we
write the additional free energy density with the follow-
ing combinations of the thermal energy and the above
two lengths: ∆F = kBTq

2
c/ξ + kBTqc/ξ

2. In the mean
field model K = KoS

2 and ∆ε = ∆εaS, and we can write

ξ(E) = γ
√
S|E|, where the constant γ =

(
Ko

εo∆εa

) 1
2
. Thus

∆F =
µT√
S
|E| + νT

S
E2 (10)

where µ = kBq
2
c/γ, and ν = kBqc/γ

2, are constants and
ν 	 µ. We have shown elsewhere [11] that the above form
of∆F can be obtained from a simple physical model treat-
ing the director fluctuation as a random variable. Calcu-
lations based on the total free energy including the di-
rector fluctuations show that both δS(E) and ∆TPN(E)
predominantly vary as |E| [11].

4.3 Order parameter susceptibility: generation
of third harmonic component of the electrical signal

We measure the low frequency dielectric response of the
medium. As we will show below, the nonlinear (field-
dependent) dielectric constant generates higher harmonics
of the low frequency response. Considering only the ca-
pacitive response, the current through the cell is given by
I = d/dt[CSV (t)] where CS = C0ε⊥, C0 being the capac-
itance of the empty cell and V (t) = V0 sinωt the applied
voltage, ε⊥ = ε− 1

3∆εaS(E), and

S(E) = S(0) + Cl|E| + CqE
2 (11)

|E| = |Eo sinωt| can be expanded in a Fourier series:

|E| = |Eo sinωt| =
2
π
Eo

[
1 − 2

3
cos 2ωt− 2

15
cos 4ωt+ ...

]

(12)
The capacitive current flowing through the cell can now
be calculated. The voltage Vm measured across the capac-
itance Cm (see Fig. 4) is given by Vm = I/ωCm, and the
component at the frequency of the applied voltage is given
by:

V1ω =
C0V0

Cm

[
ε̄− ∆εa

3
S(0) − 8

9π
∆εa

V0

d
Cl − ∆εa

4
V 2

0

d2
Cq

]

(13)
The quantity in brackets is ε⊥, which is enhanced with the
applied voltage as shown in Figure 5b. The third harmonic
signal, which has contributions from both the 2Ω and 4Ω
components in equation (12), is given by

V3ω =
∆εa
d

C0

Cm

[
8

15π
ClV

2
o +

Cq

4d
V 3

o

]
(14)

Fig. 11. (a) Variations of the third harmonic (3f) electri-
cal signals as functions of local temperature. Applied field:
1.6×107 V/m (circles) and 1.3×107 V/m (squares), frequency:
1111 Hz. (b)Variations of transmitted intensity as well as the
third harmonic electrical signal as functions of local temper-
ature at 1.6 × 107 V/m: dotted vertical line denotes the PN
transition temperature corresponding to the peak in the 3f
signal.

V3ω depends only on the field enhancement in the order
parameter, and hence on the susceptibilities Cl and Cq.

We have simultaneously measured the first (f), second
(2f) and third (3f) harmonic electrical signals as well as
the transmitted intensity as functions of local tempera-
ture near the paranematic-nematic transition point. The
3f signal shows a clear peak only at relatively high fields,
indicating that the transition has become second ordered
in nature. Variations of 3f signals at 1.3 × 107 V/m and
1.6 × 107 V/m at the frequency of 1111 Hz are shown in
Figure 11a. This frequency was chosen to get reasonable
higher harmonic signals. As we mentioned earlier, there is
some misalignment of the director above 1.1 × 107 V/m.
However, this does not affect the electrical measurements
which essentially sense only ε⊥ at high fields. The 3f sig-
nal at 1.3 × 107 V/m shows a nearly symmetric narrow
peak at 59.89 ◦C. Its value at the peak (∼2.8 × 10−4 V)
is ∼6 times larger than that of the background signal.
At 1.6 × 107 V/m the peak occurs at a higher tempera-
ture (60.08 ◦C). The signal at the peak (∼4 × 10−4 V)
is ∼ 8 times larger than the background signal. We have
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Fig. 12. Variations of third (3f) and second (2f) har-
monic electrical signals across the paranematic-nematic tran-
sition region as functions of local temperature. Applied field:
1.3 × 107 V/m, frequency: 1111 Hz.

estimated the tricritical field to be �1.7 × 107 V/m for
∆εa = −10, from the electric field phase diagram given in
reference [3]. Optical measurements could not be used to
measure the order parameter S beyond 1× 107 V/m, and
hence we could not precisely locate the tricritical point.
As we mentioned earlier the steep variation of ε⊥ upto
9.8 × 106 V/m indicates that the transition is first or-
dered whereas the variation of ε⊥ beyond 1.3 × 107 V/m
is smooth and gradual, indicating that the transition has
become second ordered (see Fig. 5b). Further the electri-
cal measurement shows a clear peak in the third harmonic
signal and hence we believe that the field induced NU− to
NB transition becomes tricritical near 1.3×107 V/m. The
lower experimental value of the tricritical field compared
to the calculated one probably arises from the contribu-
tion of the field quenching of the director fluctuations to
the thermodynamics of the PN transtion.

From the data shown in Figure 11 we find that in the
nematic phase V3ω is ∝V 2

o rather than V 3
o . For example at

59.4 ◦C, V3ω/V
2
o is 8.5 ×10−10 V−1 at 1.3× 107 V/m and

8.4×1010 V−1 at 1.61×107 V/m. At 59.6 ◦C this ratio in-
creases to 1.1×10−9 V−1 and 1.0×10−9 V−1. On the other
hand, in the paranematic phase, V3ω is ∝V 3

0 . For example
at 60.3 ◦C, V3ω/V

3
0 is 1.4 × 10−11 and 1.3 × 10−11 V−2

respectively for the same applied fields. Thus it is clear
that even at the high fields which are above the tricritical
value, the main contribution to the susceptibility arises
from the quenching of director fluctuations in the nematic
phase. On the other hand, in the paranematic phase, the
Kerr effect makes the dominant contribution to the sus-
ceptibility.

We show the variations of the 3f signal as well as the
transmitted intensity in Figure 11b as functions of the
local temperature at 1.6 × 107 V/m. The temperature at
which the 3f signal shows a peak (60.08 ◦C) is indicated
by a vertical dotted line (see Fig. 11b). It occurs at the
middle of the steep variation of the transmitted intensity
which is hence the actual bulk PN transition temperature.

Under a strong electric field, the PN transition be-
comes second ordered and the dipole moments of the
molecules may get correlated over large domains near this

transition. Due to the slow dynamics near the transition
point the domains may not be able to reorient at the fre-
quency of the applied field. As a result a second harmonic
electrical signal (2f) can be generated [8]. The variation
of measured 2f component of the electrical signal across
the paranematic-nematic transition at 1.3 × 107 V/m is
shown in Figure 12. There is some background signal due
to the nonlinearity of the voltage amplifier. However near
the PN transition point, a small peak in 2f signal which
is ∼20% higher than the background is seen and it oc-
curs at the same temperature as that of the peak in the
3f component (Fig. 12). It probably indicates the pres-
ence of polarized domains that do not reorient with the
field [8].

5 Conclusions

We have presented the high electric field phase diagram of
a nematic liquid crystal with ∆ε < 0. In the nematic phase
the field induced enhancement in the order parameter is
analysed using the Kerr effect as well as the quenching of
macroscopic director fluctuations by the field. The tem-
perature variations of the relevant susceptibilities (Cq and
Cl)indicate that the latter contribution dominates. The
uniaxial negative order parameter (SU−) in the parane-
matic phase is estimated from the dielectric constant data.
It varies as E2 indicating that the contribution comes
from the Kerr effect only. Our measurements as well as
the data available in the literature show that under an
electric field the paranematic-nematic transition temper-
ature (TPN ) varies lineraly with |E| in both materials with
∆ε < 0 and ∆ε > 0. It is argued that the quenching of
the director fluctuations under strong electric fields sig-
nificantly contributes to the thermodynamics of the ne-
matic to paranematic transition. At relatively high fields,
the third harmonic electrical signal which is a measure of
the susceptibility of the medium exhibits a peak at the
transition temperature indicating that the transition has
become second ordered. Analysis of the third harmonic
signal also shows that near TPN the main contribution to
the order parameter susceptibility of the nematic phase
comes from the quenching of the director fluctuations even
at high fields. The detection of a very small, sharp peak
in the second harmonic signal which arises at the same
temperature where the third harmonic signal diverges
indicates the presence of polarised domains near the tran-
sition point.

Our results illustrate the dominant contribution made
by the quenching of (transverse) director fluctuations by
the external field to various measured properties. A rigor-
ous theoretical model of the electric field phase diagram
should take into account this effect, even when the tran-
sition is first ordered. Near the critical point in materials
with ∆ε > 0 and above the tricritical point in materials
with ∆ε < 0, the fluctuations in the magnitude of order
parameter also should contribute to the problem.
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